

• Answer 06 questions only.

- 01. a). Solve the equation $4^{x+1} = 2 7(2^x)$
 - b). Solve the equation $2x + 3 \sqrt{x + 8} = 2$
 - c). Prove that,

$$\frac{1}{\log_x (yz)+1} + \frac{1}{\log_v (zx)+1} + \frac{1}{\log_z (xy)+1} = 1$$

- d). Resolve into partial fractions, $\frac{2}{x^2(x+3)}$
- 02. a). If a > 0 and $b^2 4ac < 0$ then show that for all $x \in R$, $ax^2 + bx + c > 0$.

Find the range of value of
$$m$$
, for which $(m-2) x^2 - 3 (m+2)x + 6m > 0$

b). If $x = p + \sqrt{p^2 + 1}$ then show that,

$$x - x^{-1} = 2p$$

If the roots of the equation,

$$x^2 - 2px - 1 = 0$$
 are \propto and β

then find the value of $(\propto^2 - \beta^2)$

- c). State the factor theorem of a polynomial p(x). Given that (x - 1) and (x + 2) are the factors of the polynomial, $P(x) = x^4 + ax^3 + bx^2 - 2x - 4$.
 - i. Show that a = 3 and b = 2.
 - ii. Factorize P(x) completly.
- 03. a). If $Sin A = \frac{1}{3}$ and is an abtuse angle, then find the value of the $(\cos A + \sqrt{2} \cot A)$
 - b). Prove that, $\frac{\sin \theta}{1 + \cos \theta} + \frac{1 + \cos \theta}{\sin \theta} = \frac{2 \sec \theta}{\tan \theta}$.
 - c). If $A + B + C = \pi$ then prove that,

$$Sin\frac{A}{2} + Sin\frac{B}{2} + Sin\frac{c}{2} = 1 + 4 sin\left(\frac{\pi - A}{4}\right)$$
. $Sin\left(\frac{\pi - B}{4}\right)$. $Sin\left(\frac{\pi - c}{4}\right)$

d). Find the general solution of the equation,

$$Sin 2\theta - 2Sin \theta - Cos \theta + 1 = 0$$

04. a). Evaluate,

i.
$$\lim_{x \to 1} \frac{1 - x^{-1/3}}{1 - x^{-2/3}}$$

ii.
$$\lim_{x \to 0} \frac{1 - \cos 2x}{x^2}$$

b). Find the derivative of the function from the first principle,

$$f(x) = \sqrt{2x + 1}$$

c). Differentiate with respect to x,

i.
$$y = \sqrt{\frac{x-4}{x+4}}$$

ii.
$$y = \frac{1 + \sin x}{1 + \cos x}$$

iii.
$$y = e^{\tan x} . \ell n (x^2 + 2) + Sin^{-1} 2x$$

- 05. a). Find the magnitude of two forces such that, when they act at right angle their resultant is of magnitude $\sqrt{13} N$ and when the forces act an angle 60°, their resultant is $\sqrt{19} N$.
 - b). State the lamis theorem of three coplanar forces acting at a point.

A weight W is suspended by two perpendicular light inextensible strings of length a and b from two points at the same horizontal level show that the tension of one string is $\frac{Wa}{\sqrt{a^2 + b^2}}$. Find also the tension of the other string.

- 06. a). Let $-2\underline{p} + 5\underline{q}$, $7\underline{p} \underline{q}$ and $\underline{p} + 3\underline{q}$ be the position vectors of three points A, B and C respectively, with respect to the fixed origin C. Where \underline{p} and \underline{q} are non-paralled vectors. Show that C are collinear. Find the ratio in which C divides C divides C.
 - b). **ABCD** is a trapezium of sides AD = DC = CB = a and AB = 2a, also **AB** and **DC** are parallel. Forces of magnitude 1,3,5,6, $2\sqrt{3}$ Newton act along \overrightarrow{AD} , \overrightarrow{DC} , \overrightarrow{CB} , \overrightarrow{BA} and \overrightarrow{AC} respectively. Find the magnitude and the direction of the resultant.
- 07. a). A particle is moving in a straight line with a uniform acceleration describes distances \boldsymbol{p} and \boldsymbol{q} in successive interval of time t. Show that the acceleration of the particle is $\frac{q-p}{t^2}$.
 - b). A particle p is dropped from the top of a cliff of height h meters. After it travelles m meters, then another particle Q is dropped from the point which is n meters below from the top of the cliff. If both particles A and B meet at the foot of the cliff at the same instant, then show that the height of the cliff is, $\frac{(m+n)^2}{4m}$.